ميكانيكا الكم نظريّة فيزيائية أساسية، جاءت كتعميم وتصحيح لنظريات نيوتن الكلاسيكية في الميكانيكا. وخاصة على المستوى الذري ودون الذري. تسميتها بميكانيكا الكم يعود إلى أهميّة الكم في بنائها(وهو مصطلح فيزيائي يستخدم لوصف أصغر كمّية يمكن تقسيم الإشياء إليها، ويستخدم في للإشارة إلى كميات الطاقة المحددة التي تنبعث بشكل متقطع، وليس بشكل مستمر). كثيرا ما يستخدم مصطلحي فيزياء الكم والنظرية الكمومية كمرادفات لميكانيكا الكم. وبعض الكتّاب يستخدمون مصطلح ميكانيكا الكم للإشارة إلى ميكانيكا الكم غير النسبية.
مقدمة عامة
أتت النظرية الكمومية (و تسمى أيضا النظرية الكوانتية (بالإنجليزية: quantum theory))في بدايات القرن العشرين مثل النظرية النسبية لحل اشكاليات مطروحة من قبل النظرية الكلاسيكية، ويمكن تلخيص هذه الاشكاليات بعدم التناسق بين درجات حرية الجسيمات (6) ودرجات حرية الحقول (عدد غير محدود) فحسب قانون توزع الطاقة بالتساوي بين مختلف درجات حرية الجملة في حالة التوازن، الذي يؤدي إلى انتقال معظم الطاقة من الجسيمات إلى الحقول، وينتج عن هذا تصورات مخيفة مخالفة للواقع : فحسب هذه النظرة يجب على الالكترون الدائر حول النواة (حسب نموذج رذرفورد) أن يصدر أمواجا كهرومغناطيسية وفقا لمعادلات مكسويل تزداد شدتها إلى اللانهاية، وبهذا يقترب أكثر فأكثر من النواة حتى تنهار جميع الالكترونات ضمن النواة، لكن من المؤكد أن هذا لا يحصل في الواقع. تقول النظرية الكلاسيكية أيضا أن اصدارات الذرة الضوئية يجب أن تغطي جميع الترددات بنفس الشدة، لكن الواقع ينقض ذلك بشدة حيث تبدي الذرات المختلفة أطيافا خاصة تتضمن اصدار امواج ضوئية على ترددات خاصة ومحددة جدا.
تنشأ مشكلة أخرى عندما نتأمل اشكالية الجسم الأسود "وهو جسم يمتص كامل الاشعاع الساقط عليه ليعيد اصداره" حيث فشلت كل المحاولات المستندة إلى الميكانيك الإحصائي الكلاسيكي في توصيف اشعاع الجسم الأسود خصوصا في الترددات العالية حيث تبدي القوانين المتوقعة انحرافا كبيرا عن الواقع وهذا ما عرف لاحقا باسم الكارثة فوق البنفسجية.
أتت بدايات الحل في عام 1900 مع ماكس بلانك الذي اقترح فكرة ثورية هدفها التنبؤ بتناقص الأنماط العالية التردد من اشعاع الجسم الأسود بافتراض ان الاهتزازات الكهرطيسية تصدر بشكل كموم، حيث يعتبر الكم أصغر مقدار معين من الطاقة يمكن تبادله بين الأجسام وفق تردد معين، وترتبط طاقة الكم بتواتر الاشعاع المرافق له :
حيث تعبر E عن طاقة الكم الصادر ،nu عن تواتر الاشعاع\تردده، h ثابت أصبح يدعى بثابت بلانك.
تأتي اشكاليات أخرى من التبصر في طبيعة الضوء ففي حين يؤكد نيوتن ان طبيعة الضوء جسيمية (فهو مؤلف من جسيمات صغيرة، وتؤيده في ذلك العديد من التجارب، نجد أن يونغ يؤكد أن الضوء ذو طبيعة موجية وتؤكد تجارب يونغ حول التداخل الضوئي والانعراج هذه الطبيعة الموجية. في عام 1923 اقترح لويس دو بروي أن ينظر إلى جسيمات المادة وذراتها أيضا على انها جسيمات تسلك سلوكا موجيا أحيانا مقترحا معادلة تشابه معادلة بلانك :
.
حيث : λ, طول الموجة، وp الزخم.
بدأت هنا تتضح ملامح صورة جديدة للعالم تتداخل فيها الجسيمات والحقول المهتزة بحيث يصعب التمييز بينهما وكان هذا ما مهد الطريق لظهور ميكانيك الكم عندما وضع نيلز بور نظريته الذرية التي لاتسمح للاندفاع الزاوي بأخذ قيم سوى المضاعفات الصحيحة للقيمة :
حيث تعبر L عن قيم الاندفاع الزاوي ،n عدد صحيح (3,2,1,...)
و هكذا ظهرت مستويات للطاقة المستقرة يمكن وضع الالكترونات الدائرة فيها مفسرة ثبات التركيب والخطوط الطيفية للذرات، لكن هذا لم يكن سوى البداية. في عام 1925 قام العالم الألماني هايزنبرغ بتقديم مبدأه في الارتياب الذي ينص على عدم قدرتنا على تحديد موضع وسرعة (اندفاع) الجسيمات الكمومية بآن واحد وبدقة متناهية. كانت هذه بداية سلسلة من الصدمات التي تلقتها نظرتنا الكلاسيكية للعالم والتي تحطمت معها كل الصورة الميكانيكية الآلية التي سادت حول العالم بعد انتصارات فيزياء نيوتن المدوية في القرنين السابقين. قام هايزنبرغ بصياغة قواعد ميكانيك الكم بصياغة جبر المصفوفات فيما عرف بعد ذلك بميكانيك المصفوفات (بالإنجليزية: matrix mechanics) سنة 1926، ظهر شرودنغر بمعادلته الموجية الشهيرة التي تبين تطور دالة موجة الجسيم الكمومي مع الزمن وعرفت تلك الصياغة بالميكانيك الموجي (بالإنجليزية: wave mechanics )، لكن رغم الاختلاف الظاهري العميق بين الصياغتين فان نتائجهما كانت متطابقة، هذا ما دفع بول ديراك بعد ذلك لتوحيدهما في اطار شامل عرف بنظرية التحويل (بالإنجليزية: transformation theory).
نموذج بور للذرة
أظهرت تجارب راذرفورد أن الذرة تتكون من مركز مشحون إيجابا يسمى نواة وإلكترونات تتحرك حولها. بينت أعمال علماء الذرة حول أطياف الامتصاص والانبعاث أن هذه الأطياف متقطعة وليست مستمرة. هذه الخاصية وجدت تفسيرها الأول فيما يعرف بنموذج بور للذرة. كانت أهم فرضية لبور هي أن الإلكترونات لا يمكنها سوى الحركة في مدارات دائرية يكون فيها الإلكترون مستقر أي لا يشع وإلا فإنه بعد مرور فترة من الزمن سوف يفقد كل طاقته ويسقط على النواة. هذا يعني أن الإلكترون لا يمكنه أن يحتل إلا سويات طاقة معينة أي أن طاقته مكممة. في حالة أستثارة الذرة فإن الإلكترون سوف ينتقل إلى سوية طاقة أعلى ثم يعود إلى حالته الأولى مع انبعاث فوتون ذو طاقة مساوية تماماللفرق بين طاقتي المستويين.
مثنوية (جسيم/موجة)و مبدأ الارتياب
لا يعطينا ميكانيك الكم تنبؤا دقيقا بنتيجة رصد أو قياس جملة كمومية أو جسيم كمومي انما يكتفي بإعطاء محموعة من النتائج الممكنة والمختلفة لكل منها احتمال وجود معين. كما لا يستطيع تحديد طبيعة الجسيم ان كانت جسيمية أو موجية فهو يعتبر هذه الطبيعة نتيجة الرصد والقياس فعندما توجه اهتمامك للخاصية الموجية للجملة ترصد تلك الخواص وعندما تهتم بالخواص الجسيمية تبدو الجملة بشكل جسيم.
أول ما ظهرت هذه المثنوية (جسيم / موجة) في تجربة يونغ الضوئية الشهيرة، فاستخدام ثقب واحد لمرور الضوء كان يؤكد الخاصية الجسيمية (التي تجلت فيما بعد بما دعي الفوتون) في حين كان فتح ثقبين يؤدي لظهور مناطق التداخل المضيئة والمظلمة. انعراج الضوء كان دليلا واضحا أيضا على طبيعة الضوء الموجية في حين أكدت أطياف الذرات وتفسير ماكس بلانك لها بأن الضوء عبارة عن طاقة تصدر بشكل كميات متقطعة متجانسة تدعى الكموم (و تمثلت تلك الكموم بالفوتونات في تجربة المفعول الكهرضوئي) الطبيعة الجسيمية للضوء.
أتت بعد ذلك علاقة دوبروي ومبدأ الارتياب (بالإنجليزية: Uncertainity principle) لهايزنبرغ ليمددا هذا التصور المثنوي باتجاه جميع الجسيمات الذرية (بالإنجليزية: atomic particles) وتحت الذرية (بالإنجليزية: sub-atomic)، وأصبح من الممكن الحديث عن تداخل الاجسام كما الحديث عن تداخل الأمواج، فقد أجريت تجربة مشابهة تماما لتجربة يونغ استخدم بها الالكترونات بدلا من الفوتونات الضوئية وحصلنا بالمقابل على مناطق ذات شدة إلكترونية ومناطق محرمة على الالكترونات وهذا عزز التأكيد أن الالكترونات كما الفوتونات تتصرف كموجة وجسيم معا. واذا اعتمدنا تفسير كوبنهاجن لميكانيك الكم فان كل الجمل الكمومية ليست لا موجة ولا جسيم إنما دالة موجية (بالإنجليزية: wave function) تعبر عن نفسها كموجة (بالإنجليزية: wave) أو جسيم (بالإنجليزية: particle) حسب توجه عملية الرصد البشري والقياس.