أول من بحث في الشواش كان عالم الأرصاد، المدعو إدوارد لورينتز. ففي عام 1960 م، كان يعمل على مشكلة التنبؤِ بالطقس. على حاسوب مزود بنموذج لمحاكاة تحولات الطقس مؤلف من مجموعة مِنْ اثنتا عشرة معادلة لتشكيل الطقس. يقوم برنامجِ الحاسوبِ هذا بتوقع نظري للطقس.
في أحد أيام 1961 م، أراد رؤية سلسلة معينة من الحسابات مرة ثانية. ولتَوفير الوقتِ، بدأَ من منتصف السلسلة، بدلاً من بدايتها.
لاحظ لورينتز عند عودته، أن السلسلة قد تطورتَ بشكل مختلف. بدل من تكرار نفس النمط السابق, فقد حدث تباعد في النمطِ، يَنتهي بانحراف كبير عن المخطط الأصلي للسلسلة الأصلية.
وفي النهاية استطاع لورينتز تفسير الأمور, فقد قام الحاسوب بتخزين الأعداد بستة منازل عشرية في الذاكرة. لكنه كان يظهر ثلاثة أرقام عشرية فقط. عندما قام لورينتز بإدخال عدد من منتصف السلسلة أعطاه الرقم الظاهر ذو المنازل العشرية الثلاث وهذا أدى لاختلاف بسيط جدا عن الرقم الأصلي الموجود في الحسابات. ورغم أن هذا الخلاف بسيط جدا وضئيل فقد تطور مع تسلسل الحسابات إلى فروق ضخمة تجلت بانحرافات المخططات الواضحة.
كانت الأفكار التقليدية وقتها تعتبر مثل هذا التقريب إلى ثلاثة مراتب عشرية دقيقا جدا ولم يكن الفيزيائيون يلقون بالا إلى الفروقات التي يمكن أن تنتج بعد مدة من هذه الفروقات الضئيلة في الشروط البدئية للتجربة, لكن لورينتز غير هذه الفكرة.
جاءَ هذا التأثيرِ لكي يعرف بتأثيرِ الفراشة. فكمية الاختلاف الضئيلة في نقاط بداية المنحنيين كانت صغيرة جدا لدرجة تشبيهها بخفقان جناح فراشة في الهواء لكن آثارها كانت عظيمة لدرجة التنبؤ بإعصار يضرب منطقة من العالم.
من هذه الفكرة، صرّح لورينتز بأنّه من المستحيل توقع الطقس بدقّة. على أية حال، قادَ هذا الاكتشاف لورينتز إلى تشكيل النظرية التي عرفت لاحقا بنظرية الشواش.
بدأ لورينتز البحث عن نظام (مجموعة معادلات) أسهل من نظامه ذو الاثني عشر معادلة ليدرس حساسيته للشروط البدئية. اعتمد لورينتز نموذجا يصف جملة دولاب مائي مؤلفة من ثلاث معادلات.
حصل لورينتز من جديد على حساسية عالية للشروط البدئية في هذا النموذج, فالنموذج كان يقدم نموذجا شواشيا يتغير مخططه بتغير الشروط البدئية لكن المدهش في الموضوع أن شكل المخططات كان دائما متشابها بشكل لولب مزدوج. تقليديا، كانت توصف الحركات بأنها إما أن تؤدي إلى حالة مستقرة حيث تصل المتغيرات إلى قيم ثابتة لا تتغير أو حركات دورية تقوم بنفس الحركات على نفس المسارات بشكل مستمر, لكن في هذه الحالة حصل لورينتز على حركات ذات شكل متشابه لكنها غير متطابقة وبالتالي غير دورية, وهذا النمط من الحركة هو ما أسماه لورينتز فيما بعد بجاذب لورينتز.